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In the last decade a new idea has been introduced into the statistical the- 
ory irreversible processes, an Idea which, ln particular, permits the derl- 
vatlon of the hydrodynamic equations and of expressions for the hydrodynamic 
transport coefficients, giving In prlncl 

P 
le the posslblllty of their calcu- 

lation on the basis of molecular models cf., for example, Cl]). In the pre- 
sent paper equations coMectlng the stress with small deformations of a vls- 
coelastlc body are derived in a similar way. 

External forces, acting on a vlscoelastlc body, deform It and Induce In 
It flow processes characterized by a velocity distribution v(x,t) (x is the 
position vector); that Is, these forces bring about a state of thermodynamic 
lnequlllbrlum In the body. The problem reduces to the determination of the 
statistical distribution of these nonequlllbrlum states. Generally the so- 
called local equilibrium distribution Is taken as the zero approximation. 
This distribution Is attained If the entire body is divided Into "lnflnltesl- 
mal" but macroscopic elements of volume and If It Is supposed that each ele- 
ment Is ln an equlllbrluni characterized by Gibbs' canonical distribution. 

pL = exp {P sdgx [F (x) - Ho (x)1} (P=&i) (1) 

Here k Is the Boltzmann cons ant, 
t 

T the absolute temperature, F(X,t) 
the free energy density, and Ho x) the Hamlltonlan density In a system of 
coordinates moving with velocity v(x,t); the lntergratlon is extended over 
the volume of the body. 

The functlor. p(X) Is CoMected with the Hamlltonlan of the system X 
through the relation 

s Ho (x) d3x = H - xpivi f t 2 mivia 
2 1 

where m, and p, are the mass and momentum of the 6th particle, V,= V(r,,t) 
Is the value of the velocity at the location of the f,th particle. 

The external forces are not included in R . However, without loss of 
generality, It can be considered that the external forces have a potential 
@ with explicit time dependence. Indeed, the molecules on the boundary of 
the body can be excluded from the system, and the forces of Interaction 
between the molecules of the system and the molecules on the boundary, the 
coordinates of which represent external parameters, can be regarded as the 
external forces. Distribution (1) Is the generalization to condensed media 
of the local equlllbrlum distribution Introduced by Chapman and Enskog for 
Ideal gases (21. 

We write the exact distribution In the form 
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P = sxp IB (1 f 41 (Bl = In PL) (3) 

Here o Is a correction. The distribution must satisfy the Llouvllle 
equation 

dP 8P -=- 
dt at f {H + @‘, PI = 0 

Substituting (3) Into the above yields 

de / dt = - dl / dt (4) 

We will assume that the deformation process begins at the moment t = 0, 
that Up to this moment the body Is In an equilibrium undeformed state, With 
this _ reduces to the usual Gibbs distribution and c = 0 . The symbolic 
solution to Equation (4) with Initial condition c = 0 has the form 

t dl (XT, 4 
c (X,, t) = - 

s dt dz 
0 

where X, is the set of phase coordinates of the system at the moment 7 . 

We will restrict ourselves to the cases of small velocity gradient; that 
Is, to weak nonequlllbrlum. The quantity o Is a measure of the nonequl- 
llbrlum of the system, and therefore distribution (3) can be expanded In the 
series 

p= PL(1 fBcf *..I (5) 

Assume that the Hamiltonian of the system has the form 

H = z(z; +sk) + 2 nkl (f-3 
k k<l 

where ck Is the Internal energy of the particle, and uk, Is the Interaction 
energy between the kth and Jth particles. In the large majority of cases 
the force of Intermolecular Interaction has a limiting radius of Interaction 
small In comparison with the scale of macroscopic inhomogeneltles. With this 
condition the stress tensor uap Is obtained as the statistical mean of a 
tensor _ n $, rhere 

~~;=+[$%i!$ - 2 ('icr - rjJ8$] (I-$" = pi-mivi) (7) 
i i<j 

Here p,O 1s the momentum relative to a system of coordinates moving with 
velocity V(r,,t), v is some macroscopic volume, and the summation extends 
over the molecules In this volume (cf., for example, [3 and 41). 

From the definition pr, It follows that the tensor 
0 

aup = -<I& (8) 

where the angle brackets with subscript L signify an average with respect 
to the local equilibrium distribution, Is determined by the deformations 
just as though the flow processes did not exist; I.e. Is determined by the 
usual Hooke's law. 

Averaging (7) with the aid of dlstrlbutlon (5) we get 

d GO = ad (0) + crap 9. . . ( a,;’ = p-‘dt’ @; (X,), 
s 

dl (X , 6\ 
d; ,) (9) 

” 
Quantities of the type <A (XJB (X,1> are calledtemral correlaticm functions 

and play a large role In contemporary theories of Irreversible processes. 

Now It Is necessary to compute 

dl _ 81 - - i- Uf, I)+ N’, 11 
dt at (W 

The effect of the Interaction + on the motion In phase space of a macro- 
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scoplc body, containing a large number of particles, 1s lnslgnlflcant com- 
pared with H : i acts only on those particles near the boundary. Therefore 
ln the calculation (10) the third term on the right side can be neglected. 
(This of course can be done If we examine the motion over an Interval of time 
small compared with the Polncare cycle). 

On the basis of (l), (2) and (6) we get, expanding out the Poisson brack- 
ets, 

all -= 
dt s (41) 

Here summation with respect to repeated Cireek subscripts Is Implied. 

Let us examine the term 

As already mentioned, the radius of intermolecular Interactions Is much 
smaller than the scale of macroscopic Inhomogeneities, including lnhomoge- 
neltles In the velocity. Therefore 

‘ka 
avka 

- Vlacz=:-_ 

arkp 
(‘kp - ‘1p) (13) 

The free energy density depends on the time through the time dependence 
of the components of the deformation tensor; that Is 

aF I at = @F I at@ (auap / at). 

Prom (8) follows 

In addition, 

~~~~~+~) 

Substitution of (12) - (15) Into (11) yields 

dl avka 

dt= 
d 

$‘$@x+&o~ +z:(‘k,fl- - ‘kapkd arkP 

Here k 

PkaPkb 
IllFaD = - - 

*I, 
+$$(?b- ‘10) 

1 

(14) 

(15) 

We will neglect all terms of higher order In the velocity gradients. Then 

avka 3Vka 
p-- 

at - ‘kp a’bB 

which allows us to write (16) In the form 

dl s (I a*, avkt, -= 
dt - 8X - 2 (=kaD - ‘kaPkf4 - Pk$kp) a’,B 

k 

As a system we can consider any sufficiently large volume of the body. In 
the case of small gradients It Is possible to choose such a volume V that 
the velocity gradient In It Is constant. Then (17) takes the form 

Substitution of (IS) Into (9) yields 
t 

a* (@ 
‘TeP (‘) = j& \ d-c C%; (X,1 T,, (X,)), e 

0 

(19) 
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From (8) it follows that <T,,>, = 
more symmetrical form 

0, therefore relation (19) can be put in 

Integrating (20) by parts and taking account of (15) and the fact that 
ally (0) = 0, we get finally + 

(1) = .-!_- 
UaP kTV <TaPTpv)L ‘pv (4 - \K appv (t - z) utLv (~1 dr 

n 
Here 

K aJ.~ = -& & (Tap (X,1 T,, M,D, (22) 

Due to the short-range character of the Intermolecular force the elastic 
coefficients and functions in (21), as must be the case, do not depend on 
the volume V . 

Adding a$ and o$ , we see that the first term on the right-hand side of 
(21) leads only to a change In the coefficients of Hooke’s lawl,w;l;;s;;e, we 
second term expresses the hereditary property of the medium. 
have t 

ad3 = h aPpY”pv - s 
K aPpv 0 - 4 ulLv (4 dr (23) 

Equation (23) Is 
example, C5 and 611, 

a known relatloi of linear vlscoelastlclty (cf for 
which Is derived here on the basis of general’~rlnclples 

of statistical physics, with practically the only modelllng assumption being 
contained In the assumption of the redlus of action of the Intermolecular 
force. However, In order to calculate, with the aid of relation (22), the 
reiaxatlon coefficients, all details of the model wlli of course be necessary. 
It Is necessary to point out that the anlsotropy of appv may be brought 
about by both the anlsotropy of the medium and of the deformation. In other 
words the anlsotropy of A,+” and K,c,*” may be different In magnitude. 
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