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In the last decade a new 1dea has been introduced into the statistical the-

ory irreversible processes, an idea which, in particular, permits the deri-

vation of the hydrodynamic equations and of expressions for the hydrodynamic
transport coefficlents, giving in principle the possibility of their calcu-

lation on the basis of molecular models (cf., for example, [1]). In the pre-
sent paper equations connecting the stress with small deformations of a vis-
coelastic body are derived in a similar way.

External forces, acting on a viscoelastic body, deform it and induce in
it flow processes characterized by a veloclty distribution v(x,t) (x 1s the
position vector); that is, these forces bring about a state of thermodynamic
inequilibrium in the body. The problem reduces to the determination of the
statistical distribution of these nonequilibrium states. Generally the so-
called local equilibrium distribution is taken as the zero approximation.
This distribution is attained if the entire body 1s divided into "infinitesi-
mal" but macroscopic elements of volume and if it is supposed that each ele-
ment is in an equilibrium characterized by Gibbs' canonical distribution.
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Here k¥ 1s the Boltzmann constant, T the absolute temperature, F(X,¢)
the free energy density, and g°(x) the Hamiltonilan density in a system of
coordinates moving with velocity wv(x,t); the intergration is extended over
the volume of the body.

The function p°(x) 1s connected with the Hamiltonian of the system ¥
through the relation

SHO (x) dx = H — D\pv; + %Zmiviz ()

where m, and p, are the mass and momentum of the tth particle, v, = v(r,,t)
is the value of the velocity at the location of the ¢th particle.

The external forces are not included in g . However, without loss of
generality, it can be considered that the external forces have a potential
$ with explicit time dependence. Indeed, the molecules on the boundary of
the body can be excluded from the system, and the forces of interaction
between the molecules of the system and the molecules on the boundary, the
coordinates of which represent external parameters, can be regarded as the
external forces. Distribution (1) is the generalization to condensed media
of the local equilibrium distribution introduced by Chapman and Enskog for
ideal gases [2].

We write the exact distribution in the form
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p=-exp [B (I + o] Bl=1Inpp) 3
Here o 1s a correction. The distribution must satisfy the Liouville
equation d P
p P

Substituting (3) into the above ylelds
de/dt = —dl/dt (4)

We willl assume that the deformation process begins at the moment ¢ = O,
that up to thls moment the body is in an equilibrium undeformed state, With
this ~ reduces to the usual Gibbs distribution and o = O . The symbolic
solution to Equation (4) with initial condition ¢ = O has the form

t
dl (X, 1)
c (X, t)= —%Tdr
0
where Xe is the set of phase coordinates of the system at the moment «r .
We will restrict ourselves to the cases of small velocity gradient; that

is, to weak nonequilibrium. The quantity o 1s a measure of the nonequi-
1ibrium of the system, and therefore distribution (3) can be expanded in the

series
p=rp, (1 +Bc+...) (5)
Assume that the Hamlltonlan of the system has the form
sz
H= Z(Zn}; +8k> + 2 (6)
k k<l

where ¢, 1s the internal energy of the particle, and wu,, 1is the interaction
energy between the xth and ith rarticles. In the large majorlty of cases
the force of intermolecular interaction has a limiting radius of interaction
small in comparison with the scale of macroscopic inhomogeneitles. With this
condition the stress tensor Cun 1s obtained as the statistical mean of a
tensor _ nag, vhere

P | Pi:Pig; Juy

HaB =V [Z m; - Z (ria - r]'a) 8"{3] (pio =P _mivi) @
i<j

Here p: 1s the momentum relative to a system of coordinates moving with

velocity v(r,,t), V 1s some macroscopic volume, and the summation extends
over the molecules in this volume (cf., for example, [3 and 4]).

From the definition p, it follows that the tensor
Ogp = — Mygdr, (8)

where the angle brackets with subscript [ signify an average with respect
to the local equilibrium distribution, is determined by the deformations
Just as though the flow processes did not exist; 1i.e. 1s determined by the

usual Hooke's law,
Averaging (7) with the aid of distribution (5) we get

t
o . dl(X,,
Oup = 0o + 0,3 +... <0ag) = B.g ar' <naﬁ (X, %ﬂ» )

0
Quantities of the type <A (X)) B (X,)> are called temporal correlation functions
and play a large role in contemporary theories of irreversible processes.
Now 1t is necessary to compute

%lt — g.f« 4H, I A D, D (10)

The effect of the interaction & on the motion in phase space of a macro-
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scopic body, contalning a large number of particles, 1s insignificant com-
pared with ¥ : & acts only on those particles near the boundary. Therefore
in the calculation (10) the third term on the right slde can be neglected.
(This of course can be done if we examine the motlon over an interval of time
small compared with the Poincaré cycle).

On the basis of (1), (2) and (6) we get, expanding out the Poilsson brack-
ets,

dl S x4 0 OV PiaPrp g Buy; vy,
5= A Py =+ 22— + 7 Vka — 2) VkaPk (11)
dt at %“ ot % my, O gl ory, ® ; Ll T

Here summation with respect to repeated Greek subscripts 1s implied.
Let us examine the term

ou 1 ou
3 _ ki
2 5 v = 2 5 (g — v1) (12)
kel ke kel ka

As already mentioned, the radius of intermolecular lnteractions 1s much

smaller than the scale of macrosropic inhomogeneities, including inhomoge-
neities in the velocity. Therefore

dvy,
ark; (reg — rip) (13)

The free energy density depends on the time through the time dependence
of the components of the deformation tensor; that is

OF | 8t = (OF | duyg) (Quyg / 01).

Vpg — Vig = —

From (8) follows

OF [Ouyg =0,y (t4)
In addition,
du,g 1 ('ava dvg
Oap _ 1 (% 5) 5)
ot 2 \az,  da,
Substitution of (12) — (15) into (11) ylelds
di v, AL OV4q
= \a;g) 5z, PX 4 S0 S + X (Meap — Pealis) Frep (16)
Here - k P k
PraPrp 1~ %%t
Hkaﬁ = my, - E—Zl arka (rkﬁ - rlﬁ)
1

We will neglect all terms of higher order in the veloelty gradients. Then
g N’
ot T T Uk or g
which allows us to write (16) in the form

dl . Ov, © vy,

= gﬂaa Ty %~ 2 (Mkap — VkaPhs — Pra Vk8) Frpg an
k

As a system we can consider any sufficlently large volume of the body. In

the case of small gradients it 1s possible to choose such a voiume V¥ that

the velocity gradient in it is constant. Then (17) takes the form

dl i o
S =T 5% <Taﬁ =VII,, + R oy dsx) (18)

Bl
Substitution of (18) into (9) yields

a1 ' o v, (v)
9.8 =T d’c<naﬁ (Xl)Tpv(X‘:))L aXv (19)
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From (8) it follows that (T, =0, therefore relation (19) can be put in
more symmetrical form ¢
t
w_ 1 dv, (1)
Oup = 377 \8TTap (X) Ty, (X )1, ox. (20)
0

Integrating (20) by parts and taking account of (15) and the fact that
Uyy (0) = 0, we get finally .
1
1) - —
Gaﬁ) = KTV <TaBTp.v>L Uy # — SKaBpw (t—1) Uy (v) dr 1)
0
Here

1 d
Kaﬂ\.w =TV dt <Ta.[3 (Xt) pr (Xr)>L (22)

Due to the short-range character of the intermolecular force the elastic
coefficients and functions in (21), as must be the case, do not depend on
the volume V .

Adding Gaﬁ) and US% » We see that the first term on the right-hand side of
(21) leads only to a change in the coefficlents of Hooke's law, while the
second term expresses the hereditary property of the medium. As a result we
have ¢

R SKan (t — 1) u,, (@) dv (23)
0
Equation (23) is & known relatlon of linear viscoelasticity (cf., for

example, [5 and 6]), which is derived here on the basis of general principles
of statistical physles, with practically the only modelling assumption being
contained in the assumption of the redius of actlon of the intermolecular
force. However, ln order to calculate, with the ald of relation (22), the
relaxation coefficients, all detalls of the model will of course be necessary.
It 18 necessary to point out that the anisotropy of Ifaguv may be brought
about by both the anisotropy of the medium and of the deformatlon. In other
words the anisotropy of lapr and](aﬁpvmay be different in magnitude,
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